solving fuzzy equations using neural nets with a new learning algorithm
Authors
abstract
artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. this paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. for this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. the suggested neural net can adjust the weights using a learning algorithm that based on the gradient descent method. the proposed method is illustrated by several examples with computer simulations.
similar resources
Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
full textSolving Fuzzy Equations Using Neural Nets with a New Learning Algorithm
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...
full textUtilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...
full textutilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations
this paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. this architecture of articial neural networks, can get a real input vector and calculates its corresponding fu...
full textA NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS
In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...
full textA New Iterative Method For Solving Fuzzy Integral Equations
In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are valid.
full textMy Resources
Save resource for easier access later
Journal title:
journal of advances in computer researchPublisher: sari branch, islamic azad university
ISSN 2345-606X
volume 3
issue 4 2012
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023